
Research Report 329
University of Chicago

Dept. of Statistics

Optimality Issues in Constructing a Markov Tree from Graphical Models

Russell Almond�

Augustine Kong�

Harvard University
Department of Statistics

November, 1991

This work was facilitated in part by Army Research Contract DAAL03-86K-0042. This report is a
revision and update of material originally presented in Harvard University Technical Reports S-118 and
S-121.

� Russell Almond is currently visiting at the University of Washington, Department of Statistics
� Augustine Kong is now at the University of Chicago Department of Statistics.



Optimality Issues in Constructing a Markov Tree from Graphical Models
Russell Almond and Augustine Kong

ABSTRACT

Several recent papers have described probability models which used graph and hypergraphs to represent
relationships among the variables. Two related computing algorithms are commonly used to manipulate
such models: the peeling algorithm which eliminates variables one at a time to find the marginal distribution
of a single variable, and the fusion and propagation algorithm which simultaneously solves for many marginal
distributions by passing messages in a Tree of Cliques whose nodes correspond to subsets of variables . The
peeling algorithm requires an elimination order. As demonstrated in this paper, the elimination order can
in turn be used to construct a Tree of Cliques for propagation and fusion. This paper addresses three
computational issues: 1) The choice of elimination order determines the size of the largest node of the
Tree of Cliques, which dominates the computational cost for the probability model using either peeling or
fusion and propagation. We review heuristics for choosing an elimination order. (2) Inserting intersection
nodes into the tree of cliques produces a junction tree which has a lower computational cost. We present an
algorithm which produces a junction trees with a high computational efficiency. (3) Augmenting the tree of
cliques with additional nodes can lead to a new tree structure which more clearly expresses the relationship
between the original graphical model and the tree model.

Key Words: Graphical Model, Tree of Cliques, Markov Tree, Junction Tree, Triangulation, Elimination Order.

1. Introduction and Background

Of late, it has become increasingly obvious that algorithms designed for probabilistic manipulations in
expert systems (Pearl[1988] and Lauritzen and Spiegelhalter[1988]) and those developed by geneticists to
aid the analysis of pedigree data (Cannings et al.[1973]) are essentially the same. The common thread is
that in both disciplines, the dependencies among the variables can be represented by interaction graphs. In
general, the interaction graph is a set of nodes (or vertices)—representing variables—connected by edges—
representing dependencies among variables. The variables corresponding to the nodes, depending on the
application, can be genotypes of individuals or information from sensors. The interaction graph is important
in three ways: (1) it provides a clear visual picture of how the joint probability distribution can be factored
into simpler components, (2) it visually and mathematically represents independence conditions among the
variables—specifically, variables which are not neighbors in the graph are conditionally independent given
the variables separating them (Pearl[1988])—and (3) it can guide efficient local computation schemes.

This last use of the graph is particularly important as the most efficient computation plans can be
found via graph theoretic manipulation alone, with little reference to the underlying probabilistic model. In
fact, Bertelè and Brioschi[1972] use essentially the same graph manipulations to solve non-serial dynamic
programming problems. While they use graphs to depict an additive factorization of an objective function,
we use graphs to depict a multiplicative factorization of a probability distribution. Although the motivating
problems are different, many of their graph theoretic results are directly relevant to our applications. Indeed,
similar algorithms also work for cases where the joint relation among the variables is modeled by a belief
function (Kong[1986], Dempster and Kong[1988], Shafer, Shenoy and Mellouli[1988], Almond[1989]) instead
of a probability distribution. Shenoy and Shafer[1990] develop an axiomatic framework which incorporates
all of the problems mentioned above.

One of the most efficient methods for calculating marginal distributions of complex graphical mod-
els is the Fusion and Propagation Algorithm (Dempster and Kong[1988], Lauritzen and Spiegelhalter[1988],
Pearl[1988], Almond[1989], etc.). This algorithm can be thought of as a series of local processors arranged
in a tree structure called the Markov tree. Each node (processor) in the tree combines incoming messages
with local information to produce outgoing messages and marginal information about the variables. Each
node has a local space of variables over which it does its processing. The challenge is to build a Markov tree
which is optimal in the sense that it does as many calculations as possible over as small a space a possible,
while at the same time maintains its consistency. That is the problem addressed in this paper. We will use a
simple genetics example to illustrate the ideas while keeping in mind the broader applicability of the theory.

1



2. Background

This section illustrates, with a simple example, how a factorization of a multivariate probability distribution
can be represented by a graph. This produces the graphical model. Several manipulations of the graphical
model can produce marginal distributions. We describe one called peeling or elimination which can be used
to construct marginal distributions from a graphical model. An improved tool for this task, the fusion and
propagation algorithm discussed in Section 2.4, is based in part on the peeling algorithm.

2.1 Factorization of Probability Distributions

Let X�� ���� Xn be a collection of discrete random variables with joint outcome space � �
Q

i�V �i where
V � f�� � � � � ng is the index set of the variables. For I � V , xI denotes an element of the margin�I �

Q
i�I �i,

and x denotes an element of �. Let � be a set of non-empty subsets of V . A probability measure p over �
has potential representation h�� �i if

p�x� � K��
Y
I��

�I�xI � �����

where
K �

X
x��

Y
I��

�I�xI � �����

is the normalization constant, and �I are functions of x that only depend on x through xI , the projection of
x onto the margin �I . The functions �I � I � �� are referred to as component potentials, and� is the index set
for the potentials.

Consider the family tree displayed in Figure 1a with 9 individuals. Let Xi� i � �� � � � � �, denote the
genotype of person i. The joint distribution of the genotypes has the factorization

p�x�� � � � � x�� � p�x��p�x��p�x��p�x��p�x�jx�� x��p�x�jx�� x��p�x�jx�� x��p�x	jx�� x��p�x�jx�� x	� �����

reflecting the fact that the genetic material of an offspring is inherited from the parents. Note that (2.3) is a
potential representation with V � f�� � � � � �g,

� � ff�g� f�g� f�g� f	g� f�� �� 
g� f�� �� �g� f�� 
� �g� f�� 	� �g� f�� �� �gg ���
�

and K � �. The potentials themselves are the marginal and conditional distributions. For example,
�f�g�x�� � p�x�� and �f�����g�x�� x�� x�� � p�x�jx�� x��.

1 2

5 6

8

43

7

9

1 2

5 6

8

43

7

9

Figure 1a. Pedigree with married cousins Figure 1b. Graphical Model representation

2



One strength of the potential representation is that it permits the simple introduction of new information
about the variables through new potentials. For example, suppose some data are collected on the genotype
of Person �. Now the conditional joint distribution is

p�x�� � � � � x�jdata� �
p�x�� � � � � x��p�datajx�� � � � � x��

p�data�
�

�

p�data�
p�x�� � � � � x��p�datajx�� �����

This has the potential representation

K��p�x��p�x��p�x��p�x��p�x�jx�� x��p�x�jx�� x��p�x�jx�� x��p�x	jx�� x��p�x�jx�� x	�p�datajx�� ���	�

where
K � p�data�� �����

Here � is equal to

ff�g� f�g� f�g� f	g� f�g� f�� �� 
g� f�� �� �g� f�� 
� �g� f�� 	� �g� f�� �� �gg �����

which is (2.4) with an additional element f�g.
In general, given the potentials �I of a potential representation, the standard problem is to compute

either the marginal distributions of individual variablesXi, or K, the inverse of the normalization constant.
Note that the the marginal distributions computed from the potential representation (2.6) are actually con-
ditional on the observed data and K can be interpreted as the likelihood. To compute K by brute force
based on (2.2) involves multiplying and adding numbers defined on the joint space � which usually is very
large. Fortunately, in many cases, efficient computing strategies can be developed based on the graphical
representation of the joint distribution. Geneticists analyzing pedigree data developed such computational
algorithms under the name peeling (Hilden[1970], Cannings et al. [1972], Kong[1991a]). Operations re-
searchers developed similar algorithms for non-serial dynamic programming under the name elimination
(Bertelè and Brioschi[1972]). Although the calculations corresponding to the graph manipulations are
different in the two cases, the underlying graph theory remains the same.

2.2 Graphs and Peeling (Elimination)

A graph G is a collection of vertices or nodes with edges or links joining some pairs of vertices. For the purpose
of this paper, the vertices correspond to the variables Xi. Formally, a graph is a pair hV � Ei where V is the
set of vertices (the index set of the variables in the model) and E � f�i� j�j� an edge joining nodes i and jg.
If� is a set of subsets of V , then the graph G � hV � Ei which satisfies E � f�i� j�j�I � �such that fi� jg � Ig
is called the 2-section of �. For example, Figure 1b is the 2-section of (2.4). (� is actually a hypergraph, a
generalization of a graph where “edges” are allowed to contain more than 2 vertices. For a discussion of this
algorithm in terms of hypergraphs, see Kong[1986] or Almond[1989].) Note that different �’s may share
the same 2-section. In particular, elements of � which are singleton sets have no impact on the 2-section.
Indeed, note that Figure 1b is also the 2-section of (2.8).

Two nodes of a graph G are called neighbors if there is an edge joining them. For a node i, the
set of neighbors—the neighborhood—of i in G is denoted by N�ijG�. The closure of i in G is Cl�ijG� �
fig � N�ijG�, that is the node and its neighborhood. For example, in Figure 1b, N��jG� � f�� �� 	� �g,
Cl��jG� � f�� �� �� 	� �g,N��jG� � f�� �g and Cl��jG� � f�� �� �g.

Suppose a joint distribution p, which may be conditional on data, has potential representation h�� �i.
Let G be the 2-section of�—the graphical structure—of p; the triple h�� ��Gi is the graphical model of p. Given
the potentials �I � I � �, the peeling algorithm calculates the normalization constant K and the marginal
distribution of one of the variables, say Xj . The peeling algorithm does this by “peeling away” the other
variables one at a time.

Choose any variable Xi� i �� j. For i � V , define ��i� to be fI jI � �� i � Ig the set of potential indices
containing i. Note that

S
I��
i� I � Cl�ijG�. Group the factors of the potential representation for p (2.1) into

three pieces: the normalization constant, K��; all terms in ��i�,
Q

I��
i� �I�xI �; and all terms not in ��i�,

3



Q
I����
i��I �xI�. Only the second group contains the variable Xi. To peel away Xi, replace this second

group of potentials with a new potential defined over �N
ijG�, ��N
ijG��xN
ijG��. To simplify the index set, if
N�ijG� � � we incorporate �N
ijG� into ��

N
ijG�. Specifically, the marginal distribution of XV�fig—the joint
distribution of all the variables except Xi—is written as:

p�xV�fig� � K����N
ijG��xN
ijG��
Y

I����
i��I ��N
ijG�

�I�xI � �����

where

��N
ijG��xN
ijG�� �

��
�
�N
ijG��xN
ijG��

P
xi��i

�Q
I��
i� �I �xI�

�
if N�ijG� � �P

xi��i

�Q
I��
i� �I�xI �

�
otherwise

�����

The right hand side of (2.9) is a potential representation of p�xS�fig�—p�xS�fig� � h��� ��i where �� �
�����i�� � fN�ijG�g. This corresponds to a reduced graphical model G�. Computing the new potential
��
N
ijG� involves multiplying and summing numbers over the space �Cl
ijG�. The variable Xi which is

summed out in expression (2.9) and (2.10) is said to be peeled or eliminated from the joint distribution.

The peeling procedure involves eliminating variables, one at a time, until only one variable is left. Let
� � �in� � � � � i��, some permutation of the indices in V , be the order the variables are peeled, where i� is
the variable of interest. Denote the potential representation of the marginal distribution of Xfi������itg after
the variables �Xn� Xn��� � � � � Xn�t��� have been peeled as h�t� �ti. Hence �n � � and for t � n� � � � � �,
�t�� � ��t � �t�it�� � fN�itjGt�g where Gt is the 2-section of �t. The peeling procedure computes a
sequence of new potentials:

�t��
N
itjGt� �

�
�tN
itjGt�

P
xt
�t�� if N�itjGt� � �tP

xt
�t�� otherwise

������

where
�t���xCl
itjGt�� �

Y
I��t
it�

�tI�xI �� ������

The sequence of spaces over which numbers are multiplied and summed are�Cl
itjGt� for t � n� � � � � �. After
summing out all the variables except Xi� , we get

p�xi� � � K����
fi�g�xi��� ������

the marginal distribution of Xi� . Now K can be computed as

X
xi�

��i�

��
fi�g�xi� �� ����
�

which we can think of as the peeling of the last variable. � is therefore the empty list and G is the empty
graph.

Table 1 shows the peeling of the potential representation (2.6) following � � ��� 	� �� �� �� �� 
� �� ��. Note
that when Vertex 8 is peeled, an edge has to be added joining Vertices 5 and 7, and when Vertex 7 is peeled,
an edge is added joining Vertices 4 and 5.

4



t �t Gt it N�it j Gt� Cl�it j Gt�

9
n

������� 
������� 
������� 
����	�� 
��	���


��� 
��� 
��� 
��� 
��

o

1 2

5 6

8

43

7

9

9 f�� �g f�� �� �g

8
n

������� 
������� 
������� 
����	�� 
��	�


��� 
��� 
��� 
��

o
1 2

5 6

8

43

7

6 f�� �g f�� 	� �g

7
n

������� 
������� 
������� 
��	�� 
��	�


��� 
��� 
��

o
1 2

5

8

43

7

3 f
� �g f�� 
� �g

6
n

������� 
������� 
����� 
��	�� 
��	�


��� 
��

o
1 2

5

8

4

7

8 f�� �g f�� �� �g

5
n

������� 
������� 
����� 
����


��� 
��

o
1 2

54

7

7 f
� �g f
� �� �g

4
n

������� 
������� 
����


��� 
��

o 1 2

54 5 f�� �� 
g f�� �� 
� �g

3
n


������

��� 
��

o 1 2

4 4 f�� �g f�� �� 
g

2 f��� ��� ���� ���g 1 2 2 f�g f�� �g

1 f���g 1 1 fg f�g

Table 1. Eliminations for the Pedigree example
For each stage t of the reduction of the graph, this table shows the successively smaller versions of the graph Gt and the list

of factors �t from which the variable it is removed. The table also shows the neighborhood of it, N�it j Gt�, and the closure
Cl�it j Gt�. Edges filled-in during the elimination process are dotted.

5



2.3 Peeling Sequence and Computations

The order the variables are peeled can have a big effect on computations. Intuitively, the larger the size
of the computation space when a variable is peeled, the higher the computational cost. More formally, for
J � V , define the size of J as Y

i�J

j�ij�

During peeling, the required memory and computations are related to to the sizes of the closures Cl�itjGt�,
t � n� � � � � �. The exact relation depends on the application. However, in most cases, the order of magnitude
of the amount of computations is determined by the size of the largest closures (see Kong [1988]). Hence
a peeling order is “first order optimal” or “1-optimal” if it minimizes the size of the largest closures, and
“optimal” if it minimizes the size of all the closures. Section 4 discusses optimality and computational cost
issues in more detail.

In the genetics example, we may assume that j�ij is the same for all i, and the size of any closure is
(on the log scale) the number of variables in that closure. The peeling procedure summarized in Table 1, in
which all closures contain at most four variables, is actually optimal. In contrast, it is not optimal if we start
by peeling X� since Cl��jG� � f�� �� �� 	� �g, involving � variables. In general, the task of finding an optimal
peeling or elimination order is purely graph theoretic.

A better understanding of elimination orders requires the concept of a triangulated graph. A graph is
said to be triangulated if there does not exist a cycle of length 4 or above which does not have a chord—an
edge connecting two non-adjacent vertices in a cycle. For example, the graph in Figure 1b is not triangulated.
The cycle (1,4,7,8,5,1) has length 5, because 5 distinct vertices are involved, and it does not have a chord.
Recall that in the elimination process summarized in Table 1, two edges, ��� �� and �
� ��, are added in the
intermediate steps. In general, the elimination of a vertex it forces the addition of edges connecting those
neighbors of it which are not already connected in the current graphical structure, Gt. Filling-in these edges
in the original graph produces the graph displayed in Figure 2.

1 2

5 6

8

43

7

9

Figure 2. Filled-in (triangulated) model for pedigree data

Note that the graph in Figure 2 is triangulated. The same cycle (1,4,7,8,5,1) now has two chords, ��� ��
and �
� ��. This is not accidental. A graph created in this particular way—the triangulated graph induced
by a particular elimination order, in this case (9,6,3,8,7,5,4,2,1)—is always triangulated. Let G� denotes the
triangulated graph induced from G by the elimination order �. Consider applying the elimination order �
to G� . Because of how G� is constructed, it is clear that

Cl�itjG
t
�� � Cl�itjG

t� ������

for all t. Also, �G��� , the induced graph when � is applied to G� , is equal to G� itself because no new edges is
added in the elimination process. Indeed, an alternative definition to triangulated graphs is that a graph G
is triangulated iff there exists an elimination order such that G� � G. Such a � is called a perfect elimination
order.

6



For any graph G � hV � Ei, a subset J of V is completely connected if all pairs of vertices in J are neighbors
in G. A clique is a maximal completely connected subset. For example, the graph in Figure 2 has six
cliques: f�� �� �� 
g� f
� �� �g� f�� �� �g� f�� 
� �g� f�� 	� �gand f�� �� �g. Any graph is completely determined by
its cliques. Let G be any graph, � be some eliminating order and G� be the induced triangulated graph.
Each of the closures Cl�itjGt� which appeared during the elimination process is the subset of at least one of
the cliques of G� . It is also true that for any clique of G� , there exists t such that Cl�itjGt� is equal to that
clique. These two facts (see Lemma 1 in Appendix I) imply that the largest closure is the same as the largest
clique of G� .

2.4 Propagation and Fusion

The peeling algorithm described above is essentially a clever way of exchanging the combination (multi-
plication) of potentials and the projection (summation) of potentials to efficiently compute the marginal
distribution of one of the variables. Computing the marginal distributions of all n variables by applying
the peeling procedure n separate times is clearly highly inefficient. Indeed, consider the peel procedure
summarized in Table 1 which gives the marginal distribution of X�. If we then compute of the marginal
distribution of X� using the peeling order (9,6,3,8,7,5,4,1,2), the computations involve is identical to the
earlier case up to the last one or two steps. The fusion and propagation algorithm (Pearl[1988], Dempster and
Kong[1988], Lauritzen and Spiegelhalter[1988]) provides an efficient method for re-doing such calculations.

To understand propagation and fusion, we start from a triangulated graph resulting from some trian-
gulation of the original graphical structure G. The cliques of this triangulated graph are then organized in
a tree structure (the exact method is described in Section 3). For example, Figure 3 (ignore the directions
of the arrows at this moment) shows a tree of cliques corresponding to the triangulated graph in Figure 2.
Each potential �I in the potential representation is assigned to one of the cliques which contains I . Each
clique C � N , where N denotes the set of cliques, is then given a local value �C equal to the product of
all potentials assigned to it. A unit value (constant unit function) is assigned to any clique which has no
assigned component potentials. Thus (2.1) becomes

p�x� � K��
Y
C�N

�C�xC� ����	�

1,2,4,5

4,5,7 5,7,8

3,4,7

5,6,8

7,8,9

1,2,4,5

4,5,7 5,7,8

3,4,7

5,6,8

7,8,9

Figure 3a. Passing messages inwards Figure 3b. Passing messages outwards

Figure 3 shows the message passing strategy for the simple pedigree example. The leaves of the tree
(those nodes which are connected to exactly one other node) pass a message consisting of only their local
information, thus the Nodes f�� �� 
� �g, f�� 
� �g, f�� 	� �g and f�� �� �g are leaves and pass messages to their
neighbors, as shown by the arrows of Figure 3a. As the message is passed, any variable which is not in

7



the receiving node is eliminated by summing out over the other variables. Thus, the message passed from
Node f�� �� 
� �g to Node f
� �� �g is

�f�������g�f�����g�xf���g� �
X

xf���g��f���g

��xf�������g� � ������

The Node f
� �� �g combines all of its incoming messages with its local information and passes the result
to its remaining neighbor, the Node f�� �� �g. After the all the messages corresponding to the arrows in
Figure 3a are passed, the Node f�� �� �g has all the information necessary to calculate the normalization
constant and the marginal distribution over f�� �� �g. To obtain marginal distributions for other nodes the
inner nodes pass messages (calculated in the same way) outwards along the path of Figure 3b. After both
directions of propagation, each node has enough information to calculate both the normalization constant
and its own local marginal distribution.

More generally, if a Node C� in the tree of cliques has neighbors C�� � � � �Ck, then the message passed
to from the Node C� to the node Cj is

�C��Cj
�xC��Cj

� �
X

xC��Cj
��C��Cj

�
B��C��xC��

Y
i�������k

i��j

�Ci�C��xC��Ci
�

�
CA � ������

this is called the fusion equation. In essence, it is very simple. The message sent to Node Cj from the
NodeC� is the product of the local potential and the messages coming in to NodeC� from every direction
except the one from NodeCj . This computation is done over the spaceC� and then variables not inCj are
marginalized out by summing over them.

Fusion and propagation is just a clever way of simultaneously peeling all variables; that is, when a
variable is not needed in one part of the tree, it is eliminated from the messages via marginalizations. This
depends on the fact that under certain conditions, one can redistribute the marginalization (summation) and
combination (multiplication) operations. These conditions (Shenoy and Shafer[1990]) essentially amount
to a simple and obvious requirement: if any two nodes in the tree of cliques contains a variable X , then all nodes
lying on the (unique) path between those nodes must contain X . Trees having this separation property are called
Markov Trees.

Formally, let T � hN �Li be a tree (graph with no cycles) in which the nodes inN are labeled as subsets
of some index set V . (To make the distinction clear, T � hN �Li is referred to as a tree of nodes and links while
G � hA� Ei is as a graph of vertices and edges.) The separation property is defined as: For any two nodes,N�

andN�, any other nodeN� which lies in the path joining them must satisfyN� �N� � N�. A tree T which
has the separation property is called a Markov Tree. Examining all nodes containing X� or X� shows that
the tree in Figure 3 has the separation property. Section 3 describes how to build a tree of cliques which is a
Markov tree.

2.5 Remarks

The importance of the graphical structure of the potential representation cannot be over emphasized.
Apart from being a great tool for finding efficient computing strategies, it also provides a good summary
of the relations among the variables. In particular, it follows from the Gibbs-Markov Equivalence Theorem
(see Darroch, Lauritzen and Speed[1980]) that if two variables are separated by another set of variables in
G—any path connecting the two variables must include at least one member of the separating set—then the
two variables are conditionally independent given the separating variables. For example, in Figure 1b it is
immediately clear that X� and X� are conditionally independent given X� and X�.

Note that many authors, especially Lauritzen and Spiegelhalter[1988], Pearl[1988], and Shacter[1986],
use directed graphical models as opposed to the undirected ones discussed here. The direction of the
arrows indicate causality (Pearl[1988]) or some weaker notion such as convenient conditional distributions
(especially in the influence diagram school, Schacter[1986]). In either case, the arrows indicate that the

8



distribution of each “child” node (one at which the arrows point) is given conditional on its parents (the
nodes from which the arrows come). For example, Figure 4a shows the directed graph model corresponding
to Figure 1. To get from the directed model to the undirected model, one simply forms the list of potentials
and takes its 2-section. This process is partially illustrated in Figure 4b where the potentials are drawn as
a “hypergraph,” each “hyperedge” circling the variables in one of the component potentials. This is the
“moralization” process described in Lauritzen and Spiegelhalter[1988]. Although directed models may be
more convenient for elicitation and assessment processes, taking the factorization of the problem as the
primary representation has two advantages: (1) it eliminates the need for “moralization” and (2) it allows
the same results to be used for functions other than probability distributions which do not have a well
defined concept of conditioning.

1 2

5 6

8

43

7

9

1 2

5 6

8

43

7

9

Figure 4a. Directed Model Figure 4b. Potential Hypergraph

3. Building a Markov Tree

Given a graphG and an elimination order�, the cliques of the induced triangulated graphG� can be arranged
into a Markov tree which supports the fusion and propagation algorithm. For this purpose, two elimination
orders, � and ��, are said to be equivalent if G� � G�� . Comparisons of non-equivalent elimination orders are
addressed in the Section 4. This section starts by describing an algorithm for constructing a Tree of cliques
given a graph and an elimination order, thn raises issues concerning the non-uniqueness of the Tree. An
extended version of the tree of cliques—the Junction tree—partially resolves the issue of non-uniqueness
and generally leads to more efficient computations.

3.1 Building the Tree of Cliques

Given a graph G and an elimination order �, the procedure given below constructs a Markov Tree whose
nodes corresponds to the cliques of the induced triangulated graph G� . Note that it may sometimes be
more natural to start the construction process with a graph which is already triangulated. In that case, the
elimination order can be any perfect elimination order with respect to the triangulated graph.

To construct the Tree of Cliques we build a sequence of trees T t� t � �� � � � � n, moving backwards through
the elimination order. At step 1, create a tree T � with a single node labeled fi�g. In general, at step t, create
a node labeled Cl�itjGt� in one of two ways. If the T t�� has a node labeled N�itjGt�, then simply relabel
that node as Cl�itjGt�. If not, create a new node labeled Cl�itjGt� and attach it to an existing nodeNwhich
satisfies N�itjG

t� � N. The existence of such aN is given by Lemma 2a in Appendix I. There can however
be more than one existing node which contains N�itjGt�. This issue of non-uniqueness is addressed in
Section 3.3. Lemmas 2a and 2b in Appendix I show that the final tree T � T n has nodes that correspond to
the cliques of G� and also satisfies the separation property. Appendix II provides an implementation of this
algorithm in Common Lisp.

The above construction algorithm is applied to the example displayed in Table 1, with the results
presented in Figure 5. Note that although in this example all the relabelings occurred in the first part of the

9



1 1,2 1,2,4

Step 1 Step 2 Step 3

1,2,4,5 1,2,4,5

4,5,7

1,2,4,5

4,5,7 5,7,8

Step 4 Step 5 Step 6

1,2,4,5

4,5,7 5,7,8

3,4,7

1,2,4,5

4,5,7 5,7,8

3,4,7

5,6,8 1,2,4,5

4,5,7 5,7,8

3,4,7

5,6,8

7,8,9

Step 7 Step 8 Step 9
Figure 5. Tree of Cliques from Example Pedigree

construction, this does not hold for all graphs. Also, here the choice of neighbor for each new node added
happens to be unique; Section 3.3 examines the case where this does not hold.

3.2 Augmenting the tree of cliques

The procedure outlined above takes a graphical structure G and produces a corresponding tree structure T ,
but one step yet remains to turn the graphical model h�� ��Gi into the Markov tree model hV � �� T iwhich is
used in the fusion and propagation algorithm, that is the construction of the new potentials � corresponding
to the nodes of the tree. This is actually very simple. For each I � � we choose a node ��I� in the tree of
cliques which is such that I � ��I�. The existence of the mapping � � � 	 N is guaranteed by the nature
of the tree of cliques (Lemma 3 in Appendix I). The potential associated with a given node,N, in the tree of
cliques then becomes:

��xN� �
Y

I��
I��N

�I�xI �� �����

Any node N which is not in the image of � under � is assigned a unit potential.
If the mapping � was injective (one-to-one)—that is each component I � � corresponds to a unique

node ��I� in the tree of cliques—then the Markov tree model would be “modular” in the sense that separate
components of the problem were kept separate. An injective mapping is invertible, so the component
associated with each node of the tree (if there is one) is readily identifyable. This is not in general the case.
However, the fusion and propagation algorithm relies only on the fact that the tree of cliques is a Markov
tree; in particular, the tree of cliques can be augmented by additional nodes as long as the separation property
is not violated. It is always possible to add a node which is a subset of another node and have the result
still be a Markov tree. As all of the elements of � are either a node in the tree or a subset of a node in the
tree (Lemma 3), it is always possible to produces an augmented tree of cliques T � by adding new nodes
corresponding to elements of �.

Figure 6a illustrates the augmentation process. There are six components in � not included in the
tree of cliques (Figure 5): f�� �� 
g� f�� �� �g, f�g, f�g, f�g, and f	g. These are added as extra nodes, and
connected to any node containing them. There is now a 1 to 1 mapping from the components of � to the

10



1,2,4,5

4,5,7 5,7,8

3,4,7

5,6,8

7,8,9

1,2,4

1,2,5

1

2

3

6 1,2,4,5

4,5,7 5,7,8

3,4,7

5,6,8

7,8,9

1,2,4

1,2,5

1

2

3

6

4

5

7

8

9

Figure 6a. Augmented Tree of Cliques Figure 6b. Doubly Augmented Tree

nodes of T . There are three nodes which do not correspond to a potential of the original model: these are
f�� �� 
� �g, f
� �� �g, and f�� �� �g. The potentials associated with those nodes are the unit potentials over the
corresponding space (which has no effect on the calculations).

Augmenting has two effects in the tree model. First, it is easier to modify one of the components to
represent new information or perform sensitivity analysis. For example, suppose that new information is
obtained or hypothesised about Person �. Under the unaugmented tree of cliques model, the information
about Person � is stored at Node f�� �� 
� �g; to modify that information, it must be separated from other
information stored in that node (like the conditional distribution of 
 given � and �) and a new f�� �� 
� �g
potential computed before the change is propagated by passing new messages. In the augmented tree of
cliques, the information about Person � is stored in Node � with no other information; the new information
can be easily substituted for the old and the effects propagated through the system. Second, when tracking
influence back through the tree model, identifying nodes of the tree model that produce unusual results is
possible, but identifying the component potential (or potentials) in the original that produce the effects may
not be possible in the unaugmented tree. For example, if information about Person � had a strong impact
on our conclusions, we could trace that influence back to Node � in the augmented tree of cliques, but only
to Node f�� �� 
� �g in the unaugmented tree. Thus, augmentation facilitates two important tools of model
exploration.

Further augmentation of the tree Model can be useful. In the genetics example, new data about
Person � may be incorporated into the tree model by the creation of a new node f�g. Figure 6b shows a
double augmentation where all single variables are added as nodes to the augmented tree. The single variables
are important because: (a) the marginal distributions over single variables are most likely to be of interest
and (b) new data (or hypothetical data for sensitivity analysis) are most likely to be entered though the
single variables. The new nodes created by double augmentation are assigned unit potentials.

3.3 Building a Junction Tree

In general, more than one tree of cliques can be constructed from a given triangulated graph. For
example, consider the graph in Figure 7a which is triangulated. Three possible tree of cliques, displayed as
Figures 7b–d, can be constructed from this graph. Note that fD�C�B�Ag and fC�B�D�Ag are both perfect
elimination orders and hence equivalent. Suppose the elimination order fD�C�B�Ag is chosen and the
algorithm for constructing a tree of cliques is applied. fA�Cg and fA�Dg. Working backwards through the
elimination order, after processing Vertex C, there will be a tree with two nodes, fA�Bg and fA�Cg, linked
together. When the Vertex D is processed, the new clique node fA�Dg created can be attached to either
fA�Bg or fA�Cg resulting with Figure 7b or Figure 7c respectively. Note that the prefectly legitimate tree

11



A

B C

D

AD

AB AC AB AC

AD

AB

AC

AD

Figure 7a. A Model Graph Figure 7b. Tree Model 1 Figure 7c. Tree Model 2 Figure 7d. Tree Model 3

of cliques in Figure 7d will never be constructed in this case. Of course, Figure 7d can be constructed if the
elimination order fC�B�D�Ag is used instead.

Not only is the non-uniqueness of the tree cliques inherently non-pleasing from a theoretical point a
view, it also raises the question of whether there is a practical difference among these different trees from a
computation perspective. In general, the computational cost at each node is proportional to the number of
links (�) attached to that node squared (� messages must be calculated each requiring the multiplication of
� potentials). Therefore, it is better to have less links attached to nodes which correspond to large outcome
spaces. In this sense, ifD has a outcome space smaller than that ofB andC, then Tree of Cliques in Figure 7d
is superior to those in Figure 7b and Figure 7c. However, even Figure 7d can be improved on.

The key idea is to insert intersection nodes into the tree of cliques. These intersection nodes form
a smaller space for combining information sources. For example, the junction tree model presented in
Figure 8c, which is also a Markov Tree, has several advantages over the three trees of cliques presented in
Figure 7. First, more combinations take place in the smaller Node fAg rather than in one of the larger nodes,
such as fA�Bg or fA�Cg. Second, it is conceptually simpler. From Figure 8c it is easy to see that the three
cliques have the common element A. This is much less apparent from any of Figures 7b–d.

Jensen[1988] introduces the term junction tree, using a slightly different definition from us. He starts
by defining the junction graph—a graph produced by starting with the cliques of the graphical model and
connecting each pair of cliques with a non-empty intersection through an intermediate intersection node
(intersection nodes are marked with square boxes). Jensen then defines a junction tree to be a Markov
spanning tree of the junction graph. We define a junction tree to be a Markov tree with the additional
property that for every pair of neighboring nodes, one is a subset of the other. This definition includes
Jensen’s junction trees as a special case. For example, consider the graph shown in Figure 7a. Its junction
graph is given in Figure 8a. The graph in Figure 8b is a junction tree by Jensen’s definition. Both the graphs
in Figure 8b and 8c are junction trees by our definition.

It is often the case that a model based on a well chosen junction tree will have a lower associated
computational cost than a model based on the tree of cliques. An adaptation of the tree of cliques construction
algorithm to produce junction trees which have some optimal properties is presented below.

Building the junction tree requires the introduction of an artificial distinction between clique nodes
(shown in the figures with round boxes) and intersection nodes (shown with square boxes). The algorithm for
building the junction tree is similar to the algorithm for building the tree of cliques described in Section 3.1
where we work backwards through the elimination order. At step 1, a tree with a single clique node, fi�g
is constructed. In general, at step t, letN� � N�itjGt� andC� � Cl�itjGt�. The are four distinct cases :
A.1 IfN� is an existing intersection node, create a new clique node labeled asC� and attach it toN�.
A.2 If N� is not an existing intersection, but is a subset of some existing intersection node. Let N be the

smallest among such intersection nodes (if necessary, break ties in an arbitrary fashion) . Create a new
intersection nodeN� and a new clique node C�. AttachC� toN� andN� toN.

B.1 IfN� is an existing clique node, simply relabel it C�.

12



AB AC

AD

A

A A

AB AC

AD

A A
A

AB AC

AD

Figure 8a. Junction Graph Figure 8b. Jensen Junction Tree Figure 8c. Our Junction Tree

B.2 IfN� is the subset of an existing clique node C (but not of an existing intersection node), create a new
intersection nodeN� and a new clique node C�. AttachC� toN� andN� to C.

In addition , when a new intersection node N� is created (either Step A.2 or B.2), carefully check all of the
neighbors of the node (N orC) to whichN� was attached. If any of the neighbors are subsets ofN�, unlink
those neighbors from N or C and relink them to N�. Appendix II contains a LISP implementation of this
procedure. As an example, consider the triangulated graph shown in the top left-hand corner of Table 2.
Let � � �A�B�C�D�E� F � be the perfect elimination order. Table 2 illustrates both the elimination process
and the sequential construction of the Junction tree. Note in particular that when Vertex B is added (t � �),
the link joining the intersection node fFg to the clique node fC�E� Fg is redirected to the newly created
intersection node fE�Fg.

Before listing the properties of Junction Trees constructed following the above procedure, we introduce
the concept of maximal intersections. For a clique C of the triangulated graph G� , let IC be the collection of
maximal sets in fNjN � C �C� where C� is some other clique of G�g. An element of IC is called a maximal
intersection of C. Note that a setN � C �C� which is a maximal intersection of C need not be a maximal
intersection of C�. For example, in Table 2, the intersection between the two cliques fD�Fg and fA�E� Fg
is fFg. The set fFg is a maximal intersection of fD�Fg, but not a maximal intersection of fA�E� Fg.

The Junction Tree constructed satisfies the following:
(I) It is a Markov Tree where the clique nodes are the cliques of the triangulated graph G� and the

intersection nodes are the intersections of some pairs of cliques of the triangulated graph G� . All the
cliques are represented.

(II) The nodes correspond to distinct subsets of variables (vertices of G). Note that this is not a property of
Jensen’s Junction Trees.

(III) The set of neighbors of a clique node C is IC, which also implies all neighbors of a clique node are
intersection nodes. An intersection node may have both types of neighbors. (In general, for any two
neighboring nodes, one must be the subset of the other.)

(IV) Among all connected Markov Trees which satisfy (I), which includes all Trees of Cliques and Jensen’s
Junction Trees, the cliques of G have the minimum number of links in this Junction Tree.

(V) For two Junction trees constructed based on two equivalent elimination orders, the neighbors of the
clique nodes are identical. In other words, difference can only occur with respect to links among
intersection nodes. From the perspective of computational efficiency, these differences are secondary.

The proofs of the these facts are given in Appendix I.
Similar to the way the tree of cliques was augmented, the junction tree can be augmented. In this case,

carefully search all nodes to make sure that each additional node is attached to the smallest node which
contains it. In many cases, nodes which the augmentation process would have added to the tree of cliques
will already be present as intersection nodes.

13



t Gt J t it N�it j Gt� Cl�it j Gt�

6 A fE�Fg fA�E� Fg

A

B C

DE F

AEF

BEF CEF

DFEF F

�� �
n

AEF ��
BEF ��
CEF ��


DF ��
EF �

o

5 B fE�Fg fB�E� Fg

B C

DE F

BEF CEF

DFEF F

�� � f�BEF �� �CEF �� �DF �� �EF �g

4 C fE�Fg fC�E� Fg

C

DE F CEF DFF

�� � f�CEF �� �DF �� �EF �g

D fFg fD�Fg

3
DE F EF DFF

�� � f�DF �� �EF �g

E fFg fE�Fg

2
E F EF �� � f�EF �g

F fg fMg

1
F F �� � f�F �g

Table 2. Building a Junction Tree

For each stage t of the reduction of the graph, this table shows the successively smaller versions of
the graph Gt from which the variable it is removed, and the junction tree J t. The table also shows the
neighborhood of it in Gt, N�it j Gt�, which is added as an edge (edges) to the graph Gt�� as part of the
elimination process, and the closure of it in Gt, Cl�it j Gt�, which becomes a clique node in the junction tree.
Clique nodes are in round boxes and intersection nodes are in square boxes.

4. Elimination Orders

For a given graph G, two elimination orders � and �� are not equivalent if the induced triangulated graphs
G� and G�� are not the same. The two different triangulated graphs will not have the same collection of
cliques and, as a consequence, the corresponding Markov Trees constructed will also be different. Since the
the Markov Tree determines the computational cost—both execution speed and storage requirements—of
fusion and propagation, it is important to find an elimination order which leads to efficient computations.
The problem of finding an optimal elimination order is very difficult. Many authors have developed
heuristics for choosing optimal elimination orders to produce optimal trees of cliques; these are reviewed

14



below.
As discussed in Section 1, the size of the frame determines both the cost of combining distributions

over that frame and storing distributions local to that frame. The nodes of the tree of cliques are the local
support spaces for the storage of local information and the combination of distributions in local computation
algorithms. To store a potential over a node N of the tree of cliques, with corresponding outcome space �N,
requires a table of j�Nj (the size ofN) numbers. If the node N contained n binary variables, the table would
have �n entries. Combination of two potentials over this space would require the multiplication of j�Nj
numbers. It is thus clear that smaller cliques are better than larger cliques, especially as very large cliques
could run into physical memory limitations for storage or computation.

Finding a 1-optimal elimination order—order for which the largest clique created is a small as possible—
is a NP-complete problem (Arnborg et al.[1987]). The related problem of finding a minimum fill-in is also
NP-complete (Yannakakis[1981]). Therefore, for graphs G which have a large number of vertices, rather
than concentrating on an algorithm to find an optimal tree of cliques, we focus on heuristics for producing
good trees of cliques.

4.1 Simple Heuristics

As a starting point, consider the following procedure, called the one step look ahead, for finding elimi-
nation orders. (Kong[1986a] introduces this heuristic for finding optimal elimination orders for the peeling
algorithm; however, it is equally applicable to elimination orders for producing trees of cliques.) This proce-
dure is also known under many names: the greedy algorithm, (Lange and Boehnke[1983]), and the minimum
degree algorithm (Bertelè and Brioschi[1972]).

One Step Look Ahead, Smallest Clique (one-sc). At each step of the elimination procedure, look at the
graph Gt.

1) If there exists a leaf (that is an variable, Xj such that vertices in the set N�j j Gt) are all connected),
eliminate that leaf. (Kong[1986a] has shown that when it can be done, this is always an optimal
strategy).

2) If there is no leaf, eliminate Xj such that the size of Cl�j j Gt� is as small as possible.
3) If there exists more than one such node, break ties arbitrarily.

In particular, at the second stage of the one step look ahead procedure, the criterion for selecting
variables is the size of the clique produced when the variable is eliminated—the smaller the better. Therefore,
we refer to this procedure as the one step, smallest clique. The eliminated vertex has the smallest neighborhood,
hence Bertelè and Brioschi[1972] call it the minimum degree algorithm. Variations on this procedure result
from using other criteria in the second stage of one step look ahead.

Another measure of cost associated with the elimination of a given variable is the fill-in number, or
deficiency. The fill-in number for a variable, i, to be eliminated from the graph Gt is the number of pairs
j� k � N�ijGt� which are not connected. In other words, it is the number of simple edges which would need
to be fill-in if we were to eliminate i from Gt. For situations which involve more than binary variables, the
fill-in number is generalized as �

�

P
log�j�fj�kgj where the sum is again taken over the pairs j� k � N�ijGt�

which are not connected. Using the fewest fill-ins criteria in Stage 2 creates a variation of the one step look
ahead procedure called one step look ahead, fewest fill-ins procedure.

One Step Look Ahead, Fewest Fill-ins (one-ff). As in the one step look ahead, smallest cliques procedure
except replace Stage 2 with Stage 2a:
2a) Eliminate i (or Xi) which has the smallest fill-in number with respect to Gt.

Note that a leaf always has a fill-in number of zero so that the first stage is redundant in the fewest fill-ins
procedure. Bertelè and Brioschi[1972] discuss this procedure under the name minimum deficiency.

In Stage 3 of both procedures ties are broken arbitrarily. Using one of the other candidate criterion
to break ties, creates “one and a half step look ahead” procedures. In particular, using Stages (1), (2), (2a)

15



and then (3) makes the one step look ahead, smallest cliques, break ties with fewest fill-ins procedure. Reversing
the order of (2) and (2a) makes the one step look ahead, fewest fill-ins, break ties with smallest cliques procedure.
Bertelè and Brioschi[1972] discuss these heuristics under the names minimum degree-minimum deficiency and
minimum deficiency-minimum degree.

Although these heuristics often work well, they do not produce an optimal elimination order in all cases.
The example in Figure 10 taken from Bertelè and Brioschi[1972] illustrates the point. The elimination order-
ing chosen by all four one-step algorithms (up to symmetry) is: V�� V�� V�� V�� V�� V�� V�� V�� V	 . This produces
two cliques of 5 vertices and one of 7 vertices. On the other hand, the ordering: V�� V�� V�� V�� V�� V�� V�� V	� V�
produces four cliques of 6 vertices.

V1V2V3V4

V5 V6 V7 V8 V9

Figure 10. The One-Step heuristics don’t work well here (Bertel̀e and Brioschi[1972])

Even though not always optimal, the one step ahead algorithm and its various variations work opti-
mally, or near optimally in a large number of cases. Unsurprisingly the simple strategies (smallest cliques
and fewest fill-ins) take less time than the compound strategies. The fewest fill-ins heuristic is often as
effective as the compound heuristics. Intuitively, reducing unnecessary fill-ins leads to smaller cliques at
later stages of the elimination process, so this result is not surprising. Also, smaller cliques naturally require
fewer fill-ins.

4.2 Initial and Final Theorems

The one-step look ahead algorithm differs slightly from the greedy algorithm in that if it discovers a
leaf vertex—a vertex which has all of its neighbors connected—it stops immediately, and eliminates that
node first. It can do this because there exists an initial theorem (Kong[1986]) which states deleting a leaf
vertex first never results in a larger tree of cliques. To motivate this, look at the graph in Figure 1b. The
Vertex 9 is a leaf; all of its neighbors (�� �) are connected (part of the potential �f��	��g). When eliminated,
this node will add the clique f�� �� �g to the tree of cliques, but because f�� �� �gwas already a clique in the
graph, it would have appeared in the final tree of cliques anyway. Bertelè and Brioschi[1972] also note this
result and call the resulting theorem an initial theorem.

Zhang[1988] develops a different initial theorem, one for eliminating bridges. A bridge is a vertex
which has exactly two neighbors and is contained in exactly two edges; eliminating the bridge effectively
shortens the length of a cycle in the graph. Bertelè and Brioschi[1972] discuss several additional initial
theorems, although some of them exploit special properties of the problem domain in which they are
working (non-serial dynamic programming).

16



In many cases, it is not necessary to search for an optimal deletion order over the whole graph. In
particular, the graph may separate very naturally into two or more pieces, overlapping only at a small
separating set (consisting of two or three vertices). LetX andY be two connected sets of vertices such that
X�Y � V , that isX andY together cover the complete graph. Let� � X�Y be their intersection. If� is
a complete graph (all vertices connected), then� is a complete separator. The problem of finding and optimal
elimination ordering then divides into two smaller problem: finding an optimal elimination ordering for
X�� and then finding an optimal elimination ordering forY ��. Eliminating all of the vertices not in �
according to those orders, leave the vertices in � which, because the graph is complete, are all leaf vertices
and can be eliminated in arbitrary order. This idea is discussed in Zhang[1988] and Mellouli[1987]. Bertelè
and Brioschi[1972] discus this idea under the name final theorem because the nodes in � can be placed last
in the ordering.

4.3 Remarks

Lauritzen and Spiegelhalter[1988] recommend using a procedure called maximum cardinality search,
from a paper by Tarjan and Yannakakis[1984]. Maximum cardinality search provides a fast mechanism for
checking whether or not a model hypergraph is triangulated; however, the tree of cliques produced from
the maximum cardinality search elimination ordering has no optimality properties. An earlier paper by
Rose, Tarjan and Lueker[1976], discuses a procedure called lexicographic search, which produces a “minimal”
although not minimum, fill-in. Although both these procedures are designed to minimize fill-ins, not the
size of the largest cliques, they are being used to create trees of cliques from model hypergraphs.

Even though the maximum cardinality search and the lexicographic search are faster than the one step
look ahead algorithms, the trees they produce are less cost effective, even on the simple example of the
Rose et al. graph (Almond[1989]). As the computations in the tree model are usually performed many
times whereas Markov tree only have to be constructed once, it makes sense to trade computational time
in the construction of the tree model for computational efficiency in the fusion and propagation algorithm.
Rather than going to a faster search method, we recommend working to improve the speed of the one step
heuristics by precalculating statistics such as neighborhoods, clique sizes, and deficiency or by usinging
initial and final theorems to make the search space smaller.

Occasionally, there problems will arise for which the one step look ahead will not be adequate. In
this case, techniques like simulated annealing (Thomas[1985]) and branch and bound (or A*) search can be
used to find an optimal or nearly optimal ordering. Bertelè and Brioschi[1972] explore other heuristics and
representations such as eliminating variables in blocks.

5.0 Extensions and Applications

The algorithm described here for building the tree of cliques is used in versions 1.1 and 1.2 of the BELIEF
package (Almond[1989], see Appendix II) which implements the fusion and propagation algorithm. The
planned revision of that package will replace that algorithm with algorithm described here for building a
junction tree. Experience with the simple heuristics and algorithms shown here indicates that they should
be practical in a wide variety of problems.

This paper chose to focus on the use of the tree of cliques in probabilistic calculations; however,
essentially similar techniques can be used for non-serial dynamic programming (Shenoy[1990], Bertel̀e and
Brioschi[1972]). Our original work on this problem (Kong[1986a,b], Almond[1989]) was motivated by the
application these techniques to graphical belief function models. For the belief function formulation, finding
efficient trees is even more important because worst case costs rise very rapidly with the size of the clique.
This common thread suggest a broad class of problems to which these methods are applicable.

Shenoy and Shafer[1990] have produced an axiomatic framework for general information propagation
using two operators: combination and projection. The fusion and propagation algorithm applies to any
problem in which the combination and projection operations can be suitably distributed. In the case of
probability propagation, combination corresponds to multiplication of potentials, projection corresponds
to marginalization. For discrete programming, combination corresponds to addition and projection to
maximizing over eliminated variables. For belief functions, combination corresponds to Dempster’s rule,

17



projection to minimal extension or marginalization. Shenoy[1991] has shown how a standard decision theory
problem mixing probabilities and utilities can be placed in this framework; there is one extra technicality
here—time precedence of observations and decision puts constraints of the elimination ordering—but
otherwise the same results are used.

As one last example, consider the (relatively) simple fault tree examined in Almond[1989]. System
failure depended on the state of 13 subsystems in a complex pattern (including loops in the graphical
model). The a failure of any of the 13 subsystems could be caused by any number of basic events (in series).
There were a total of 115 basic events. Searching through the full model graph (with over 130 nodes) for
optimal deletion orders was very time consuming, even with many leaves in the model. (There are also
search costs related to the number of edges in the model). On the other hand, constructing the model was
quite simple when domain specific knowledge about the problem was added. First, the 13 subsystem failure
events were each separators, separating the graph into the 13 subsystem fault trees and the top level system
logic diagram. Furthermore, each subsystem had a very simple graphical structure: a tree. Therefore,
an optimal deletion order could determined immediately without using any of the searching algorithms
presented in Section 4. A tree of cliques was developed for each subsystem and for the top level system
separately. These were then attached at the subsystem failure event nodes. This modular construction of
the tree of cliques was far more efficient than the more general routines described here.

As problems get larger and larger,performing all the calculations via fusion and propagation is no longer
feasible. These problems will demand variations on the techniques described here, such as combination
of peeling with Gibbs sampling (Kong[1991b]). As demonstrated in Kong[1991a], the peeling algorithm
can be extended to simulate joint outcomes of unobserved variables conditioned on observed data on other
variables, which can be part of a Gibbs sampling scheme. The graphical manipulations discussed in this
paper apply equally well to such simulations.

References

Almond, Russell G. [1989]. Fusion and Propagation in Graphical Belief Models: An Implementation and an
Example. Ph.D. dissertation and Harvard University, Department of Statistics Technical Report S-130.

Arnborg, S., Corneil, D. G. and Proskurowski, A.[1987].. “Complexity of finding embeddings in a k-tree.”
SIAM Journal of Algebraic and Discrete Methods, 8, 277-284.

Bertelè, Umberto and Brioschi, Francesco [1972]. Nonserial Dynamic Programming, “Mathematics in Science
and Enginnering” series, Volume 91. Academic Press.

Cannings, C., Thompson, E. A., Skolnick, M. H. [1978].. “Probability functions on complex pedigrees.”
Advances in Applied Probability, 10, 26–61.

Darroch, J. N., Lauritzen, S. L., and Speed, T. P.[1980]. “Markov Fields and Log-Linear Interaction Models
for Contingency Tables,” The Annals of Statistics, 8, 522-539.

Dempster, Arthur P. and Kong, Augustine [1988].“Uncertain Evidence and Artificial Analysis.” Journal of
Statistical Planning and Inference, 20, 355-368.

Hilden, J. [1970]. “GENEX—An algebraic approach to pedigree proability calculus.” Clinical Genetics, 1,
319–348.

Jensen, Finn V., [1988]. “Junction trees and decomposable hypergraphs.” JUDEX Research Report, Aalborg,
Denmark.

Kong, Augustine[1986a]. Multivariate Belief Functions and Graphical Models Ph.D. thesis, Technical Report
S-107, Harvard University, Department of Statistics.

Kong, Augustine[1986b]., “Construction of a Tree of Cliques from a Triangulated Graph.” Technical Report
Technical Report S-118, Harvard University, Department of Statistics.

Kong, Augustine[1991b]. “ Analysis of Pedigree Data Using Methods Combining Peeling and Gibbs
Sampling.” to appear in the Proceedings of the 23rd Symposium on the Interface between Computer Science
and Statistics.

18



Lauritzen, David J. and Spiegelhalter, Steffen L. [1988]. “Fast Manipulation of Probabilities with Local
Representations–With Applications to Expert Systems (with discussion).” Journal of the Royal Statistical
Society, Series B,, 50, 205-247.

Lange, K. and Boehnke, Michael [1983]. “Extensions to Pedigree Analysis. V. Optimal Calculation of
Mendelian Likelihoods ,” Hum. Hered., 33, 291-301.

Mellouli, K. [1987]. On the propagation of beliefs in networks using the Dempster-Shafer theory of evidence, Ph.D.
dissertation, School of Business, University of Kansas, Lawrence, KS.

Pearl, Judea [1988]. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, California.

Rose, Donald J., Tarjan, Robert E. and Lueker, George S.[1976]. “Algorithmic Aspects of Vertex Elimination
on Graphs.” Siam J. Comput., 5, 266-283.

Schacter, R. D.[1986]. “Evaluating Influence Diagrams.” Operations Research, 34, 871-82.
Shafer, Glenn and Pearl, Judea[1990]. Readings in Uncertain Reasoning Morgan Kaufmann Publishers, Inc.

San mateo, California.
Shafer, Glenn, Shenoy, Prakash P. and Mellouli, Khaled[1986]. “Propagating Belief Functions in Qualita-

tive Markov Trees.” International Journal of Approximalte Reasoning, 1, 349–400.
Shenoy, Prakash P. and Shafer, Glenn [1990]. “Axioms for Probability and Belief-Function Propagation.”

in Uncertainty in Artificial Intelligence, 4, 169-198. Reprinted in Shafer and Pearl[1990].
Shenoy, Prakash P.[1990]. “Valuation-Based Systems for Discrete Optimization.” Proceedings of the Sixth

Conference on Uncertainty in Artificial Intelligence, Boston, MA, pp. 334-343.
Shenoy, Prakash P.[1991]. “A Fusion Algorithm for Solving Bayesian Decision Problems,” in Uncertainty in

Artificial Intelligence, Proceedings of the Seventh Conference, pp 361-369.
Tarjan, Robert E. and Yannakakis, Mihalis [1984].“Simple Linear-Time Algorithms to test Chordality of

Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs.” Siam J. Comput.,
13, 566-579.

Thoma, H. Mathis [1989]. Factorization of Belief Functions. Ph.D. Thesis. Harvard University, Department
of Statistics.

Thomas, Alan[1985]. Data Structures, Methods of Approximation and Optimal Computation, for Pedigree Analysis.
Ph.D. Thesis, Cambridge University.

Yannakakis, Mihalis [1981]. “Computing the Minimum Fill-In is NP-Complete.” Siam J. Alg. Disc. Meth.,
2, 77-79.

Zhang, L.[1988]. “Studies on finding hypertree covers of hypergraphs,” Working Paper No. 198, School of
Business, University of Kansas, Lawrence, KS.

19



Appendix I. Proofs of Technical Lemmas

Lemma 1: The cliques of the induced triangulated graph G� are the maximal sets among the closures
Cl�itjGt�� t � n� � � � � � . Because applying the elimination order � to G and G� results in the same tree, we
can consider the elimination process with respect to G� . First, recall that � is a perfect elimination order
with respect to G� . As a consequence, Cl�itjGt�� must be the subset of some clique of Gt� , because if not,
some edges will have to be added. Again, since no new edges are added in the elimination process, any
clique of Gt� is the subset of some clique of G� , which implies Cl�itjGt�� is the subset of some clique of G� .
What remains to be shown is that each clique C of G� is equal to Cl�itjGt�� for some it. Among the vertices
in C, let il be the first one to be eliminated. Obviously, Cl�itjGt�� 
 C. The fact that the elimination order is
perfect implies that Cl�itjGt�� is exactly C. �

In Section 3.1, a procedure for constructing a sequence of trees T t� t � �� � � � � n, is given. The following
three lemmas demonstrate that the procedure always work and the final tree T � T t has the desired
properties.

Lemma 2a: There exists a node of T t�� which contains N�itjGt� for t � � . The result obviously holds for
t � � Assume that it holds for t � � and prove that it holds for t. Note that, because of the construction
process, for each k � t, Cl�ikjGk� must be the subset of at least one of the nodes in T t��. Among the vertices
in N�itjGt�, let il be the first one to be eliminated. Since all the vertices in N�itjGt� are mutual neighbors
after the elimination of it, Cl�iljGl� 
 N�itjGt�. Since Cl�iljGl� has to be a subset of at least one of the nodes
of T t��, so does N�itjGt�. �

Lemma 2b: There is a one to one correspondence between the nodes of T � T n and the cliques of the
induced triangulated graph G� . Note from the construction process that the nodes of T n are a subset of
the collection of closures Cl�itjGt�� t � �� � � � n. A particular closure Cl�iljGl� will definitely be a node of the
final tree T n if it is not the subset of another closure. It follows from Lemma 1 that the nodes of Tn include
all the cliques of G� . To show that the nodes are all cliques, we only have to show that none of the nodes
of T n is the subset of another node. This can be proved by induction. It is obviously true for T�. Assume
that it is true for T t��. The new node Cl�itjGt� created at step t is the only node of T t that contains it and
hence cannot be a subset of another node. If the new node is created by relabelling a node N�itjGt�, N�itjGt�
cannot contain another node (induction hypothesis). Otherwise, N�itjGt� is a proper subset of another node
N. Any other node which is a subset of Cl�itjGt� must also be a subset of N�itjGt� and hence N which
violates the induction hypothesis. �

Lemma 2c: T � T n is a Markov Tree. The proof is again an induction on the construction process. The
tree T � obviously satisfies the separation property. Now, assume that T t�� satisfies the separation property.
If the new node of T t is created by relabeling a node N�itjGt� as Cl�itjGt�, then T t will continue to be a
Markov Tree asCl�itjGt� is the only node containing it and so will have no effect on the separation property.
Otherwise, Cl�itjGt� is created from scratch and is attached to a node N of T t�� which contains N�itjG

t�.
Note thatN is the only neighbor of Cl�itjGt� in T t. The path between any two nodes of T t�� is not affected
by the introduction of the new node. Hence, if the separation property is violated by T t, it will have to be
that there is a node N� such that the path between Cl�itjGt� and N� includes another node N�� such that
Cl�itjGt��N� is not a subset ofN��. This implies thatN�N� is not a subset ofN�� since Cl�itjGt� is the only
node containing it and N�itjGt� is a subset ofN. BecauseN is the sole neighbor of Cl�itjGt�,N�� must also
be in the path betweenN andN�. This means the separation property is violated by T t�� which contradicts
our assumption. �

Lemma 3: Existence of � . Let G be the 2-section of � and let G� be the induced triangulated graph. Let I
be an element of �. I is a completely connected subset in G and so has to be a completely connected in G� .
As a consequence, I has to be a a subset of some clique of G� . �

Junction Trees constructed following the procedure described in Section 3.3 have the properties (I)
through (V). The proof of (I) is similar to the proofs of Lemmas 2b and 2c, and will be omitted here. Property
(II) is obvious from the construction process. The proofs of (III) and (IV) are given below. (V) is the direct
consequence of (I) through (III).

20



Lemma 4a: The set of neighbors of a clique node C is the set of maximal intersection nodes, IC
(Property III). Let C be a clique node of the constructed Junction Tree. The fact that all neighbors of
C are intersection nodes follows from the construction process. By induction, each neighbor of C is the
intersection between C and some other clique(s). Let N be a maximal intersection and let C� be a clique
such that C � C� � N. By considering the path between C and C�, we see that N must be a neighbor of
C because otherwise the separation property will be violated. This implies that the set of neighbors of C
contains IC. However, note that none of the neighboring intersection nodes is the subset of another. This is
a consequence of the way we sometimes redirect the links after applying either Step A.2 or B.2. So the set
of neighbors must be exactly IC. �

Lemma 4b: (IV) in Section 3.3 . Consider any connected Markov Tree T � which satisfies (I). For a clique
C, let IC � fNj jj � �� � � �mg. Because of Lemma 4a, it is sufficient for us to show that C must have at
least m neighbors in T �. For j � �� � � �m, let Cj be a clique node such that C � Cj � Nj . For each j, for
the path between C and Cj to satisfy the separation property, the clique node C must have a neighboring
node N�

j 
 C � Cj � Nj in T �. The node N�
j , whether it is a clique node or an intersection node, must

be the subset of at least one clique other than C. We now demonstrate that theseN�j ’s must be all distinct.
To show by contradiction, suppose there exists j �� k such that N�j � N�

k � N�. The clique other than C
which contains N� must also contain Nj �Nk. But then the intersection of C and this other clique must
also containNj �Nk which contradicts the assumption thatNj andNk are distinct maximal intersections
of C. The fact that theN�

j ’s are all distinct implies Cmust have at least m neighbors in T �. �

Appendix II. Lisp Implementation

Code for the construction algorithm for the tree of cliques and all of the heuristics for produc-
ing deletion orderings is provided in the BELIEF package, which is available via anonymous ftp from
stat.washington.edu. The code for the junction tree construction procedure has not yet been imple-
mented, but will be released with the next version. The current plan is to incorporate it into a package of
GRAF functions for manipulating graphs.

The following routines are the implementation of the two key algorithms, the one for producing the
tree of cliques and the one for producing the junction tree. They are presented in LISP format. The code
assumes a Common Lisp style syntax with several specific extensions. In particular, the basic graph theoretic
operations are not standardly available in LISP but are easly implemented. The GRAF package provides
such an implementation.

21



This code implements the construction procedure for building the tree of cliques described in Section 3.1.
(defun build-tree (elimination-order graph &key (node-size #’length))

(declare (type List elimination-order) (type Graph graph))

(if (endp node-list)
;; base case
(make-empty-tree-of-cliques)

(let* ((vertex (first elimination-order)) ;variable eliminated
(N* (neighborhood vertex graph))
(C* (closure vertex graph))

;; tail recursively build rest of tree
(old-tree (build-tree (rest elimination-order)

(eliminate vertex graph))))

;; add current closure to tree
(if (null (nodes old-tree))

;;no nodes yet
(add-node! C* old-tree)

;; some nodes already in tree
(if (member N* (graph-nodes old-tree) :test #’equal-set)

;; 4A found neighborhood of vertex, rename it as closure
(rename-node! N* C* old-tree)

;; ELSE 4B add closure
(let ((new-tree (add-node! C* old-tree)))

;; and connect to a node containing neighborhood
(add-edge! (list C* (find N* (graph-nodes old-tree)

:test #’subsetp))
new-tree)))))))

22



The following procedure builds a junction tree.
(defun build-junction-tree (elimination-order graph)

(declare (type List elimination-order) (type Graph graph))

(if (endp node-list)
;; base case
(make-empty-junction-tree)

(let* ((vertex (first elimination-order)) ;variable eliminated
(N* (neighborhood vertex graph))
(C* (closure vertex graph))

;; tail recursively build rest of tree
(old-tree (build-junction-tree (rest elimination-order)

(eliminate vertex graph))))

;;; add current closure to tree
(if (null (nodes old-tree))

;;no nodes yet
(add-clique-node! C* old-tree)

;; some nodes already in tree
(let ((candidate-inter-nodes

(select N* (inter-nodes old-tree) :test #’subsetp)))
(if candidate-inter-nodes

;; 4A. found in intersection nodes
(let* ((small-size (reduce #’min candidate-inter-nodes

:key node-size))
(N-node (find small-size candidate-inter-nodes

:key node-size)))

(if (equal-set N-node N*)

;; 4A.1 Add clique to tree attach to N-node
(let ((new-tree (add-clique-node C* old-tree)))

(add-edge (list C* N-node) new-tree))

;; 4A.2 Place N* between between C* and N-node
(let ((affected-nodes

(select N* (inter-neighborhood N-node old-tree)
:test #’supsetp))

(new-tree (add-clique-node C* old-tree)))
(setq new-tree (add-inter-node N* new-tree))
(setq new-tree (add-edge (list C* N*) new-tree))
(move-edges N-node N* affected-nodes new-tree))))

;; 4B N* is the subset of a clique node
(let ((C-node (find N* (clique-nodes old-tree)) :test #’subsetp))

(if (equal-set C-node N*)
;;4B.1
(rename-node C-node C* old-tree)

;;4B.2
(let ((affected-nodes

(select N* (inter-neighborhood C-node old-tree)
:test #’supsetp))

(new-tree (add-clique-node C* old-tree)))
(setq new-tree (add-inter-node N* new-tree))
(setq new-tree (add-edge (list C* N*) new-tree))
(setq new-tree (add-edge (list C-node N*) new-tree))
(move-edges C-node N* affected-nodes new-tree))

))))))))

23


