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Work Products and Work Process

Work Product Final product that the learner produces. - Answer to
question - Essay - Simulator state

Work Process Steps learner takes to get to (candidate) solution - Action
sequence - Pauses - Event log

Often have advice about problem solving strategy
Science and Engineering Practices
Writing and Revision
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Case Study: Physics Playground

Use knowledge of physics to get ball to balloon.

Draw objects (e.g., lever) on screen.

Adjust parameters (mass of ball,
gravity, air resistance).

Players earn gold, silver or no trophy.

Learning support videos.
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Four-Processes Architecture

Figure 1: Four-Process
Architecture for
Assessments

Context Determination (aka Activity Selection)
Rules for what activity (task, problem, game
level, item) to do next
Rules for when to stop

Evidence Capture (aka Presentation)
Converts physical events (e.g., mouse click)
into logical events (e.g., move slider)
Logs logical events
Determines scoring context

Evidence Identification
Summarizes events within a scoring context
Produces a vector of observeable outcomes for
each scoring context

Evidence Accumulation
Accumulates evidence across scoring contexts
Produces the scores
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Message Format is like Email message

To:
From:
Topic:
Date:
Context:
——
Body (Contains topic dependent data)
——
Signature & Watermarks
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Scoring Contexts and Windows
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Observable Outcomes

Output of EI is a row in a data table, with key (Learner ID, Task
ID)

Columns are observable outcomes

Goal is to have educators design these without needing programmers to
implement them.

1. “Which trophy (if any) was earned?”

2. Did the player try to draw a lever?

3. How many times did the player adjust the gravity slider?

4. How much time did the player spend viewing support videos?
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Context Sets

Most observables are meaningful in more than one scoring context.

Many observables are only meaningful in some scoring contexts.

Associate observables with sets of contexts:

All Game Levels
1. Trophy
2. Time spent on learning supports

Sketching Level
2. Lever drawn

Manipulation Level
3. Gravity slider manipulation count
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Filter-Map-Reduce

Algorithm for most observables can be partitioned into three phases:

Pre-filter Only observables related to the context are computed.
Filter Remove events which are not relevant (e.g., “Ball moved”)
Map Extract relevant datum from event message. (e.g., 1 if gravity

slider, 0 if not)
Reduce Reduce the mapped values to a single outcome (e.g., sum(),

count(), any())

Filter and mapping operations are inherently parallel and can exploit cluster
computing. Reduction can be partitioned if the operator is commutative
and associative.
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A Graphical View of the algorithm
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Filtering: Focusing on what is relevant

Three kinds of filtering:

Certain observables only relevant in certain context sets (implicit filter).

Only certain message topics are interesting

Value of data field must be certain value or in a certain range.

Separating out the conditions allows optimizing computations.
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Mapping: Extracting Key Values

Takes an event and returns value and timestamp.

Value could be:

Constant
Field from the data
Transformed field from the data (common numerical operators)
Conditional Rule:

If condition 1 then value expression 1
If condition 2 then value expression 2
Otherwise default value expression
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Reduction: Summarizing Across Scoring Window

Takes vector of values and generate final observable values.

Logical summaries: any() or all()
Numerical summaries: count(), sum(), mean()
Ordinal summaries: min(), max()
Position order: first(), last()
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Example 1: What trophy did the player earn?

Filter: topic in {"Level Start", "Trophy Awarded"}

Map:

If topic == "Level Start" then none
If topic == "Trophy Awarded" then data.trophy

Reduction: max()
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Example 2: Did the player draw a lever?

Note that the EC process does the classification of drawings as engines
because it requires access to the physics engine.

Filter: topic in {"Agent Identified"}

Map:

If data.agent == "Lever" then TRUE
Otherwise FALSE

Reduction: any()
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Example 3: How many times did the player adjust the
gravity slider

Filter:

topic in {"Adjusted Slider"}
data.control == "Gravity Slider"

Map: - Always 1

Reduction: count()
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Example 4: For how long did the player use learning
supports

System logs start and stop times. Convert to number of seconds, and make
start times negative. Then take sum.

Filter:

topic in {"Learning Support Start", "Learning Support
Stop"}
data.support in {<Physics Videos>}

Map:

If topic %contains% "Start" then -((int) timestamp)
If topic %contains% "Stop" then (int) timestamp)

Reduction: sum()
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How far we have come

Goal: Get algorithm directly from the specification by content author.

Algorithm can be naturally partitioned to take advantage of parallel
computing

Kafka – Queuing algorithm
Apache Spark – Distributed Computing
jq and MongoDB pipelines

Watermarks allow system to reason about completeness of data.

Specification, not yet implementation.

May need labeling preprocessing for some applications (e.g., text
analysis).

Russell G. Almond (FSU) Filter-Map-Reduce Framework 18 / 21



Future Direction

Big issue is maintaining consistencey between EC, EI and EA processes.

Need to better capture possible data fields output from EC.

Maybe possible to work with analyses of audio/video recordings
(typically NVivo).
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Thanks

https://ralmond.net/EvidenceStream
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Message Format (JSON)
{

messageType: "ESEvent",
app: <Application GUID>,
uid: <Unique learner ID within app>,
window: <Scoring Context (Task) ID>,
timestamp: <ISO Time>,
sender: <ProccessName>,
topic: <Message Topic>| <verb>/<object>,

data: { <JSON OBJECT>},

processed: <logical>,
pError: [<error message>],
watermarks: {<mark>:<timestamp>,...}
signatures: [<encrypted checksums>]

}
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